Chain-Branching Explosions in Mixing Layers

نویسندگان

  • Amable Liñán
  • Antonio L. Sánchez
  • Forman A. Williams
چکیده

The chain-branching process leading to ignition in the high-temperature hydrogenoxygen mixing layer is studied by application of a novel WKB-like method when, as is typically the case, two branching radicals cannot be assumed to maintain steady state. It is shown that the initiation reactions, responsible for the early radical buildup, cease being important when the radical mass fractions reach values of the order of the ratio of the characteristic branching time to the characteristic initiation time, a very small quantity at temperatures of practical interest. The autocatalytic character of the chain-branching reactions causes the radical concentrations to grow exponentially with downstream distance in the process that follows. It is shown that the transverse radical profiles that emerge can be described by exponential series of the WKB type in inverse powers of the streamwise coordinate. The analysis reveals that, because of the effect of radical diffusion, the rate of radical growth is uniform across the mixing layer in the first approximation, with the exponential growth in distance having the same nondimensional streamwise variation as that of a premixed branching explosion evaluated at the transverse location where the effective Damkoher number based on the flow velocity and branching rate is maximum. This functional streamwise variation, as well as the leading-order representation of the radical profiles, is obtained by imposing a condition of bounded, nonoscillatory behavior on the solution. The resulting radical profiles peak at the location of maximum local Damkohler number and decay exponentially to the sides. Analysis of the solution in the vicinity of the maximum, which is a turning point of second order in the WKB expansion, yields the second-order correction to the growth rate as an eigenvalue in a linear eigenvalue problem. The method developed can be extended to the analysis of chain-branching explosions in laminar, self-similar mixing layers with an arbitrary number of branching steps adopted for describing the chemistry. K e y w o r d s . WKB, chain branching, mixing layers A M S subject classifications. 76V05, 76D30 PII . S003613999732648X

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous ignition for a three-step chain-branching reaction model

Spatially homogeneous thermal explosions governed by a three-step chain-branching kinetic model are described in the asymptotic limit of large activation energy for a range of chain-branching cross-over temperatures. The model consists of a sequence of chain-initiation, chain-branching and chain-termination steps. Temperaturesensitive Arrhenius kinetics is employed for the initiation and branch...

متن کامل

The influence of branching efficiency on the rheology and morphology of melt state long chain branched polypropylene/polybutene-1 blends

In this study, the compatibility of the blends of polypropylene (PP) and polybutene-1(PB-1) homopolymer before and after long chain branching process were studied. The blends were prepared and long-chain branched directly via reactive extrusion process in presence of free radical initiator and trimethylolpropane tri methacrylate (TMPTMA) poly functional monomer. The optimum percentage of TMPTMA...

متن کامل

Branched-chain ignition in strained mixing layers

The time-dependent evolution of the radical pool in an initially inert hydrogen-air counterflow mixing layer subject to variable strain is investigated analytically. Although the initial chemistry description contains three different chain carriers, namely, H, O and OH, it is shown that the ignition problem can be accurately described in terms of a single radical-pool variable that incorporates...

متن کامل

A general model for production-transportation planning in steel supply chain

This paper is focused on the tactical design of steel supply chain (SSC). A general mathematical model is proposed to integrate production and transportation planning in multi-commodity SSC. The main purpose is to prepare a countrywide production and distribution plan in an SSC with three layers consisting of iron ore mines as suppliers, steel companies as producers, and subsidiary steel compan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 59  شماره 

صفحات  -

تاریخ انتشار 1999